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Figure 1. Denoising Vision Transformers (DVT) removes the noisy artifacts in visual features present in almost all Vision Transformers
(ViTs). We use a representative set of ViTs as examples, including supervised (e.g. DeiT-III [32], Auto-aug ViT [10, 29]), reconstruction
(e.g., EVA-02 [13]), self-distillation (e.g., DINOv2 [22], DINOv2-reg [8]), and multi-modal (e.g., CLIP [26]) algorithms. Top: Each image
triplet showcases an input image, its corresponding raw feature visualization, and the cleaned feature map denoised by DVT. Bottom: These
triplets display, in order, a feature map, a K-Means cluster map, and a similarity map of the central patch (red dotted) with other patches in
the image. Observe how the artifacts negatively impact clustering accuracy and similarity correspondences and how our DVT effectively
addresses these issues. The feature colors in the visualizations are produced using principle component analysis (PCA). Best viewed in color.

Abstract

We delve into a nuanced but significant challenge inherent
to Vision Transformers (ViTs): feature maps of these models

exhibit grid-like artifacts (“Original” in Figure 1), which
detrimentally hurt the performance of ViTs in downstream
tasks. Our investigations trace this fundamental issue down
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to the positional embeddings at the input stage. To address
this, we propose a novel noise model, which is universally ap-
plicable to all ViTs. Specifically, the noise model dissects ViT
outputs into three components: a semantics term free from
noise artifacts and two artifact-related terms that are condi-
tioned on pixel locations. Such a decomposition is achieved
by enforcing cross-view feature consistency with neural fields
in a per-image basis. This per-image optimization process
extracts artifact-free features from raw ViT outputs, provid-
ing clean features for offline applications. Expanding the
scope of our solution to support online functionality, we
introduce a learnable denoiser to predict artifact-free fea-
tures directly from unprocessed ViT outputs, which shows
remarkable generalization capabilities to novel data without
the need for per-image optimization. Our two-stage ap-
proach, termed Denoising Vision Transformers (DVT), does
not require re-training existing pre-trained ViTs and is im-
mediately applicable to any Transformer-based architecture.
We evaluate our method on a variety of representative ViTs
(DINO, MAE, DeiT-III, EVA02, CLIP, DINOv2, DINOv2-
reg). Extensive evaluations demonstrate that our DVT con-
sistently and significantly improves existing state-of-the-art
general-purpose models in semantic and geometric tasks
across multiple datasets (e.g., +3.84 mIoU). We hope our
study will encourage a re-evaluation of ViT design, espe-
cially regarding the naive use of positional embeddings.

1. Introduction
In recent years, Transformers [34] have emerged as the uni-
versal architecture for modern foundation models across
many modalities, from language to audio [19, 36], text
[1, 6, 24, 27], and images [2, 10]. Vision Transformers
(ViTs) [10] are now the new de-facto standard in vision-
related tasks. These models not only achieve state-of-the-arts
under multiple benchmarks but also exhibit intriguing behav-
iors and capabilities across various tasks [4, 15, 22, 26].

Despite these significant strides made by ViTs, our work
reveals a crucial yet often overlooked challenge: the presence
of persistent noise artifacts in ViT outputs, observable across
various training algorithms [4, 10, 13, 15, 22, 26, 32] (illus-
trated in Figure 1). These artifacts, beyond being visually
annoying, hinder feature interpretability and disrupt seman-
tic coherence. For example, the bottom row of Figure 1
demonstrates that applying clustering algorithms directly
on the raw ViT outputs results in noisy clusters. This issue,
prevalent across numerous existing pre-trained ViTs, hinders
model performance in downstream tasks, underscoring the
need for a complete study to mitigate these artifacts. To that
end, this paper aims to answer a crucial research question: Is
it feasible to effectively denoise these artifacts in pre-trained
ViTs, ideally without model re-training?

To answer this, we first investigate the origins of these ar-
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(c) Artifacts remain almost consistent to their relative positions in a frame

Figure 2. Impact of positional embeddings in ViTs. (a) Compari-
son between DINOv2 ViTs [22] trained with and without positional
embeddings ((“ViT” v.s. “ViT∗”), showcasing feature maps for: (1)
a standard ViT process, (2) ViT using only positional embeddings
(PE) as input, emphasizing the emergence of artifacts, and (3) a
PE-free ViT∗ process, displaying a clear absence of these artifacts.
In the figure, “Patch”: patch embedding, “PE”: position embedding.
(b) Illustration of how ViT retains and propagates the positional
embeddings. (c) Despite significant differences in the context of
various frames, the artifacts maintain a consistent relative position
in the images (central row). Our DVT effectively denoises these
artifacts, as demonstrated in the final row.

tifacts. We posit that positional embeddings, a fundamental
component of ViT architecture, significantly contribute to
this phenomenon. Our initial analysis substantially supports
this hypothesis: First, when a zero-tensor (i.e., no content) is
fed into a pre-trained DINOv2 model [22], the resulting out-
put is predominantly characterized by similar noise patterns
(Figure 2-(a, 2)). Second, we observe a notable absence of
such artifacts in the outputs of a DINOv2 model trained with-
out positional embeddings, which contrasts sharply with the
standard model outputs (Figure 2-(a, 1) v.s. (a, 3)). Finally,
despite the significant differences in the context of various
input frames, the artifacts maintain a consistent relative posi-
tion in the images (Figure 2-(c), middle row).
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With this insight, our work develops a novel two-stage
denoising approach, Denoising Vision Transformers (DVT),
specifically designed for removing position-dependent arti-
facts from pre-trained ViTs. In the first stage, we formulate
a universal noise model for ViT outputs, which factorizes
the output into three components: a noise-free semantics
term and two terms associated with the undesirable position-
based artifacts. This decomposition is achieved by enforcing
cross-view feature consistency with neural fields in a per-
image basis. The per-image denoising process extracts noise-
free features from raw outputs and provides these clean ViT
features for offline applications. In the second stage, we
train a lightweight denoiser model, consisting of a single
Transformer block, to predict the denoised features from
the raw ViT outputs. This denoiser seamlessly integrates
into pre-trained ViTs, provides denoised features for online
applications, and generalizes well to unseen data.

We conduct empirical evaluations to demonstrate the effi-
cacy of DVT on seven representative ViTs: DINO [4], DI-
NOv2 [22], DINOv2 with Register [8], DeiT-III [32], MAE
[15], EVA-02 [12, 13], and CLIP [26]. These evaluations
showcase significant enhancements in performance across
various dense vision tasks. Our contributions are:
• We identify and highlight the widespread occurrence of

noise artifacts in ViT features, pinpointing positional em-
beddings as a crucial underlying factor.

• We introduce a novel noise model tailored for ViT out-
puts, paired with a neural field-based denoising technique.
This combination effectively isolates and removes noise
artifacts from features.

• We develop a streamlined and generalizable feature de-
noiser for real-time and robust inference.

• Our approach significantly improves the performance of
multiple pre-trained ViTs in a range of downstream tasks,
confirming its utility and effectiveness (e.g., as high as a
3.84 mIoU improvement after denoising).

2. Related Works
General purpose features from Vision Transformers.
Transformers have been used extensively across multiple
domains as general-purpose feature extractors. Originally
used primarily in language modeling, the Transformer ar-
chitecture has found success through language-based self-
training methods such as next word prediction [1, 6, 25, 33]
or masked language modeling [9, 27], to name a few. In par-
allel, Vision Transformers pre-trained via supervised learn-
ing [17, 32, 35] or self-supervised learning [4, 15, 22, 41]
have demonstrated strong generalizability to various down-
stream visual tasks, even without fine-tuning. In this work,
we show that ViTs trained with diverse training objectives
exhibit commonly observed noise artifacts in their outputs.
By addressing this issue, we significantly enhance the quality
of local features, as evidenced by improvements in semantic

segmentation and depth prediction tasks.

ViT artifacts. We study the fundamental issue of noise
artifacts in ViTs, a phenomenon that has been previously
noticed yet often unexplored. These artifacts are noticeable
as noisy attention maps in supervised ViTs (i.e., ViTs do
not attend to objects of interest well) [4, 5]. Concurrent
to ours, two recent studies similarly discover artifacts even
in self-supervised ViTs [8, 39]. Specifically, [8] describe
these as “high-norm” patches in low-informative background
regions, suggesting their occurrence is limited to large (e.g.
ViT-large or greater) and sufficiently trained ViTs. However,
our analysis indicates that this may not be the full picture.
We find a strong correlation between the presence of artifacts
and the use of positional embeddings in ViTs. This finding
suggests their presence is not strictly confined to certain
model sizes or training scales but is more fundamentally
linked to the inherent design of ViTs. Moreover, unlike
the method proposed by [8] that re-trains ViTs with register
tokens [14, 38] from scratch, our approach directly denoises
pre-trained models without re-training. Additionally, we
note that artifacts still exist in DINOv2 trained with registers
[8] (see Figure 1 DINOv2-reg, and Figure S13), and our DVT
can effectively denoise them and improve their performance.

3. Preliminaries
Forward process in ViTs. Despite varying training ap-
proaches, the ViT architecture has largely remained consis-
tent with its original design as presented in [10] and [35].
The forward process of a ViT, depicted in Figure 2-(b), starts
by converting images into 2D patches and then embedding
them, followed by a forward process of Transformer blocks.
Specifically, an image x ∈ RH×W×C is first divided into
patches xp ∈ RN×(P 2·C), where (H,W ) denotes the im-
age’s resolution, P is the patch resolution, C represents the
number of pixel channels, and N is the total number of
patches. These patches are then mapped to D dimensions us-
ing a trainable linear projection E ∈ R(P 2·C)×D to generate
patch embeddings. To inject spatial information, positional
embeddings, which encode patch coordinates and are de-
noted as Eipos, are added to the patch embeddings. Formally,
the forward process of a ViT is as follows:

z0 = [xcls +Ecls
pos;x

0
pE+E0

pos; · · · ; xN−1
p E+EN−1

pos ]

(1)

z′l = MSA (LN(zl−1)) + zl−1, l = 1 · · ·L (2)
zl = MLP (LN(z′l)) + z′l, l = 1 · · ·L (3)
y = LN(zL) (4)

Here, xcls and Ecls
pos represent the class token and its posi-

tional embedding, respectively, L denotes the number of
layers, and LN stands for layer normalization. Multi-head
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self-attention layers and multi-layer perceptron layers are
termed MSA and MLP, respectively. Note that the input-
independent positional embeddings operate as a spatial in-
ductive basis and intermix with inputs, propagating through
the entire ViT.

4. Denoising Vision Transformers
In this section, we start by analyzing ViT outputs to motivate
our approach (§4.1). Then, we introduce our per-image de-
noising method, which removes artifacts and produces noise-
free features (§4.2). Finally, we explain how the noise-free
features are utilized as pseudo-labels to train a generalizable
denoiser (§4.3). Our method pipeline is depicted in Figure 3.

4.1. Factorizing ViT Outputs

Ideal visual features should be inherently translation and re-
flection invariant, i.e., the features of an object should remain
consistent, regardless of changes in the viewing window, size,
and orientation. However, as indicated in Equations (1) to (4)
and Figure 2-(b), ViTs intertwine patch embeddings with
positional embeddings, breaking the transformation invari-
ance of visual features. This breach of invariance might not
seem immediately problematic, but our detailed investiga-
tions, as illustrated in Figure 2-(a) and (c), establish a distinct
correlation between the inclusion of positional embeddings
and the emergence of undesirable artifacts in ViT outputs.
Particularly, the middle row of Figure 2-(c) shows that these
artifacts remain nearly consistent regardless of input con-
tent, only exhibiting small residual variation across different
images.

These observations motivate us to decompose ViT out-
puts into three terms: (1) an input-dependent, noise-free
semantics term f(x)1; (2) an input-independent artifact term
related to spatial positions g(Epos); (3) and a residual term
accounting for the co-dependency of semantics and positions
h(x,Epos). Accordingly, we have:

ViT(x) = f(x) + g(Epos) + h(x,Epos), (5)

This factorization is universally applicable to all ViTs.
For instance, in scenarios where the output feature map is
spatially invariant (e.g., no positional embedding is used),
both g and h become zero functions [7]. Conversely, when
every feature is dependent on both position and semantics, f
and g turn into zero functions.

4.2. Per-image Denoising with Neural Fields

Directly addressing the above decomposition problem from
a single forward pass in a ViT is impractical due to the in-
tertwined nature of output features. To overcome this, we
harness cross-view feature and artifact consistencies: (1)

1Throughout this paper, we use “noise” and “artifacts” interchangeably.

Feature consistency refers to the transformation invariance
of visual features, wherein despite varied spatial transfor-
mations, the essential semantic content remains invariant;
(2) Artifact consistency means that the input-independent
artifact remains observable and constant across all transfor-
mations. Formally, consider an image x and a set of its
randomly transformed views T (x) = {t0(x), t1(x), · · · },
where each transformation ti is drawn from a distribution
of random augmentations T , consisting of random resiz-
ing, cropping, and flipping. Our goal is to derive a map-
ping f that ensures the semantic features obtained from
any transformed view, f (t (x)), remains equivalent to the
transformed original semantic features, t (f(x)). That is
f (t (x)) = t (f(x)) , t ∼ T . Next, we describe our ap-
proach for jointly learning the different terms in Equation (5)
to derive f .

Neural fields as feature mappings. At the core of our ap-
proach is to have a holistic image semantics representation,
F , for each individual image, paired with a spatial artifact
feature representation, G, shared by all transformed views.
The holistic image feature representation F is designed to
capture spatially independent, artifact-free semantics, while
G should encode position-dependent but input-independent
noise. We use neural fields [16, 18, 20, 28, 31, 39] to
approximate f and g. Specifically, we define f(t(x)) =
F(coords(t(x))), where coords(·) extracts the pixel coor-
dinates of the transformed views in the original image x,
and g(Eipos) = G(i), with i ∈ {0, · · · , N − 1} denoting
the patch index. For simplicity, we use G to denote the 2D
artifact feature map reshaped from the 1D ordered sequence
{G(i)}N−1

i=0 . We refer to F and G as the semantics field and
the artifact field, respectively.

Learning the decomposition. Our goal is to learn the se-
mantics field F , the artifact field G, and the residual term ∆
by minimizing a regularized reconstruction loss:

Lrecon = Ldistance + αLresidual + βLsparsity (6)
Ldistance = 1− cos(y, ŷ) + ∥y − ŷ∥2, (7)

Lresidual = ∥sg
(
y − ŷ′

)
− ∆̂∥2, Lsparsity = ∥∆̂∥1 (8)

where y = sg (ViT (t (x))) , ŷ = ŷ′ + sg(∆̂) (9)

ŷ′ = Fθ(coords(t(x))) + Gξ, ∆̂ = hψ(y) (10)

Here, cos(·, ·) denotes the cosine similarity, sg(·) represents
the stop-gradient operation, t(·) is a random transformation
sampled from T , and θ, ξ and ψ are the learnable parameters.
Our loss function ensures ∆̂ remains minimal by imposing a
sparsity regularization, thereby allowing ŷ′ to represent as
much of ViT outputs as possible. The use of stop-gradient
operators is crucial to avoid trivial solutions, such as identity
mapping. The reconstructed feature from our method is ŷ =
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Figure 3. Denoising Vision Transformers (DVT). DVT consists of a two-stage denoising pipeline. In the first stage, our method decomposes
the noisy features of a crop into a noise-free semantics term F , an input-independent, position-related artifact term G, and an additional
residual term ∆ (left). In the second stage, we train a generalizable denoiser with these individually optimized, clean features (right).

Fθ (coords (t (x)))+Gξ+sg (hψ (ViT (t (x)))), each term
corresponding to f, g, and h as delineated in Equation (5).

Optimization. We break our optimization process into two
phases, each spanning half of the total training iterations.
In the first phase, we train Fθ and Gξ using only Ldistance,
allowing them to capture a significant portion of the ViT
outputs. After completing half of the optimization iterations,
we freeze Gξ and continue to train Fθ alongside hψ using
Lrecon for the rest iterations. The coefficients α and β in
Lrecon balance loss scales and regulate the residual term to
prevent ∆̂ from over-explaining the outputs.

4.3. Generalizable Denoiser

Our per-image denoising method can already effectively re-
move artifacts from ViT outputs, yielding visually stunning
denoised feature maps, as showcased in Figure 1. The prob-
lems we are left with are run-time efficiency and distribution
shifts. Specifically, the per-image approach is suboptimal
for real-time applications, and individually denoised feature
maps can lead to distribution shifts due to sample bias, which
hampers the feature coherence across different images. To
address these issues, we introduce a generalizable denoiser.

After per-image denoising, we accumulate a dataset of
pairs of noisy ViT outputs y and their denoised counterparts
F , denoted as B = {(yi,Fi)}|Bi=1. To achieve a generaliz-
able denoising model, we distill these individually denoised
samples into a denoiser network Dζ , which is trained to pre-

dict noise-free features from raw ViT outputs. The training
objective is formulated as:

LDVT
distance = 1− cos (Dζ (y) ,F) + ∥Dζ (y)−F∥2 (11)

Specifically, our generalizable denoiser consists of a single
Transformer block, supplemented with additional learnable
positional embeddings that are applied post the forward pass
of a ViT. This design aims to mitigate the input-independent
artifacts. To predict denoised features, the outputs from a
pre-trained ViT are added with these positional embeddings
and then processed through the Transformer block. This can
be efficiently implemented in a single line of code:

denoised feats = self.denoiser(y + self.PE)

Here, self.denoiser refers to the single Transformer block,
and self.PE represents the additional learnable positional
embeddings, and y is the ViT output. Notably, this learned
denoiser is lightweight, thus adding minimal latency to the
original ViT. It also learns to generalize across samples, en-
abling real-time applications and mitigating the distribution
shift issue inherent to per-image denoising.

5. Experiments
In this section, we first test our per-image denoising algo-
rithm on ViTs trained with different objectives. Then, we
evaluate the effectiveness of our generalizable denoiser on
dense prediction tasks. For all experiments, we default to
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（a) General feature artifacts in ViTs exhibit a strong visual correlation with the feature maps generated from a zero-tensor, in all layers.

（c) Denoised features yield better clustering results and similarity correspondence

Zeros 
Tensor

1/4 Depth 1/2 Depth 3/4 Depth Final Layer

Sm
al

l
Ba

se
La

rg
e

（b) Visualization of artifacts across different layers in ViTs of varying model sizes.
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Figure 4. Visual analysis of ViT output features and denoised features. (a) Visualizations of the feature maps from all layers of a DINOv2
[22] ViT-base model, using an empty image and a cat image as input. The artifacts in the cat’s feature maps have a strong visual correlation
to empty input’s feature maps. (b) Visualizations of the decomposed artifacts, the original features, and the denoised features across various
layers of DINOv2 ViTs. We observe similar patterns in differently-sized ViTs. (c) Visualizations of the K-Means clustering results and the
cosine similarity of the central patch (red dot) to other patches. Notice that feature maps have fewer artifacts and enhanced semantic clarity
after denoising, resulting in improved clustering results and similarity correspondence.

using ViT-base models with patch sizes of 14 or 16, depend-
ing on the availability of their implementations and model
weights in PyTorch Image Models (timm [37]). We defer
the implementation details to the supplementary material.

5.1. Artifacts in ViTs

First, we explore if ViTs trained with different objectives
exhibit similar artifacts. To this end, we test with a few
representative ViTs, categorizing them into two groups based
on the severity of observed artifacts: one with strong artifacts
and the other with mild artifacts.

Algorithms producing strong artifacts. We highlight sev-
eral ViT training algorithms that result in pronounced feature
artifacts, as observed in Figure 1 (except for (d)). Among
these, DINOv2 [22], a state-of-the-art vision foundation

model with excellent performance on downstream tasks, dis-
plays clear position-related artifacts. Additionally, DeIT-III
[32], trained with class labels, and CLIP [26], trained by
text-image alignment, also exhibit noticeable artifacts. Fur-
thermore, EVA02 [13], which distills local patch features
from a pre-trained CLIP model using masked image model-
ing, also has clear feature artifacts. Our proposed method
successfully mitigates these artifacts in all the tested ViTs
(compare “Original” and “Denoised” in Figure 1).

Algorithms producing mild artifacts. Conversely, certain
models demonstrate only weak artifacts. Specifically, DINO
[4] and MAE [15] tend to exhibit low-frequency patterns
that are less visually noticeable in individual images2. In-
triguingly, while DINOv2 [22] trained with register tokens

2These patterns are more prominent in videos.
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Table 1. Comparison of features correlation to spatial positions.
We report the maximal information coefficient (MIC) between grid
features and their normalized patch coordinates.

Before denoising After denoising
Original Artifacts Semantics

DINOv2 [22] 0.44 0.54 0.22
DeiT-III [32] 0.34 0.32 0.06
CLIP [26] 0.11 0.14 0.08

(DINOv2-reg [8]) initially appears to be free from artifacts
in [8], our DVT uncovers their existence (Figure 1-(d), and
its bottom row). Although DINOv2-reg shows fewer ar-
tifacts compared to the standard DINOv2, it still displays
more artifacts than DINO and MAE. We recognize Regis-
ter as an improved ViT training technique, but it does not
fundamentally eliminate the artifacts.

Correlation between artifacts and positions. Beyond qual-
itative analyses, we quantitatively investigate the correlation
between artifacts and patch positions. Specifically, we com-
pute the maximal information coefficient (MIC) between
grid features and their normalized patch coordinates (elab-
orated in the Appendix). This metric indicates the correla-
tion extent between features and spatial positions. Table 1
presents the results. We observe that both the original ViT
outputs and the decomposed artifacts exhibit a stronger spa-
tial correlation than the denoised semantic features, regard-
less of the training approach. This confirms the link between
positional embeddings and the emergence of undesirable
artifacts.

5.2. Evaluation on Downstream Task Performance

Setup. We follow [8, 22] to assess our denoiser across sev-
eral benchmarks: semantic segmentation tasks on VOC2012
[11] and ADE20k [40], and the depth prediction task on the
NYU-depth benchmark [21], using a linear probing protocol.
It is important to note that there is no direct competitor for
these tasks in our study. Instead, our focus is on compar-
ing the performance of pre-trained ViTs before and after
applying our DVT. For all the models in the main experi-
ments, we use 10k denoised samples randomly selected from
the VOC2012 and the VOC2007 datasets, excluding their
validation samples, to train the second-stage denoiser.

Results. Table 2 presents the main results. We observe
significant and consistent enhancements in nearly all pre-
trained ViTs across various dense prediction tasks post-
denoising. These improvements are achieved without ex-
pensive re-training of ViTs at scale, unlike Register [8]; our
DVT uses just a single Transformer block for denoising.
Notably, the DINOv2-giant model, with an 83.0 mIoU on
VOC2012 as reported in [22], is significantly outperformed

by our DVT-denoised DINOv2-base model (84.84 mIoU).
This improvement extends to the ADE20k dataset, where
the DINOv2-giant and DINOv2-large models yield mIoUs
of 49.0 and 47.7, respectively as in [22], while our denoised
base model achieves a 48.66 mIoU. These results suggest
that the performance enhancement is primarily due to ef-
fective artifact removal, rather than the tiny increase in the
number of parameters of our denoiser network.

Enhancement of DINOv2 with register tokens. Our
DVT also boosts the performance of the recently introduced
DINOv2-reg model [8], where a ViT is trained with dummy
learnable register tokens. As shown in Table 2, our DVT
significantly enhances the performance of both DINOv2
[22] and DINOv2-reg [8]. When applying DVT only, DI-
NOv2 witnesses more improvements compared to using
registers; for instance, DINOv2 denoised by DVT achieves
84.84 mIoU in VOC2012 and 48.66 mIoU in ADE20k, sur-
passing the performance of DINOv2-reg, which attains 83.64
mIoU and 48.22 mIoU on the respective benchmarks. Ad-
ditionally, DVT can further enhance the performance of
DINOv2-reg [8] by a substantial margin on both datasets
(+0.86 in VOC2012 and +1.12 in ADE20k). These findings
suggest that DVT is more adept at addressing the artifact
issue inherent in ViTs. In addition, DINOv2-reg [8] requires
training ViTs from scratch using 142M images, while our
approach only requires training a single Transformer block
using 10k denoised samples.

5.3. Qualitative results

Visual analysis of ViTs. In Figure 4, we present a visual
analysis of the artifact decomposition across various layers
of DINOv2 ViTs of different sizes (b), alongside feature
maps generated using only zero-tensors as input (a). Notably,
the artifacts decomposed by our DVT show a strong visual
resemblance to these zero-tensor-input feature maps. In
addition, we observe that the artifacts vary across layers:
the shallower layers predominantly exhibit low-frequency
patterns, whereas the deeper layers are characterized by high-
frequency patterns. Importantly, these patterns are consistent
across ViTs of different sizes (e.g., from ViT-small to ViT-
large), contradicting the suggestion in [8] that only large
and sufficiently trained ViTs would display such patterns.
Further, Figure 4-(c) showcases the enhanced similarity of
central patches compared to other patches post-denoising.
Lastly, we see that the artifacts in feature maps will hurt
the K-means clustering accuracy significantly and our DVT
addresses this issue. These factors are particularly important
for dense prediction tasks.

Emerged object discovery ability. An intriguing finding
from our experiments is the emerging capability of object
discovery in denoised ViTs. Figure 5 illustrates this through
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Table 2. Qualitative performance of DVT. DVT improves differently pre-trained ViTs for dense prediction tasks. We report performance
on semantic segmentation (VOC2012, ADE20K) and depth prediction (NYUd) tasks. The best results are bolded.

VOC2012 [11] ADE20k [40] NYUd [21]

mIoU (↑) aAcc (↑) mAcc (↑) mIoU (↑) aAcc (↑) mAcc (↑) RMSE (↓) Rel (↓)

W
E

A
K

A
R

T
IF

A
C

T
S

MAE [15] 50.24 88.02 63.15 23.60 68.54 31.49 0.6695 0.2334
MAE [15] + DVT 50.53 88.06 63.29 23.62 68.58 31.25 0.7080 0.2560

DINO [4] 63.00 91.38 76.35 31.03 73.56 40.33 0.5832 0.1701
DINO [4] + DVT 66.22 92.41 78.14 32.40 74.53 42.01 0.5780 0.1731

DINOv2-reg [8] 83.64 96.31 90.67 48.22 81.11 60.52 0.3959 0.1190
DINOv2-reg [8] + DVT 84.50 96.56 91.45 49.34 81.94 61.70 0.3880 0.1157

S
T

R
O

N
G

A
R

T
IF

A
C

T
S

DeiT-III [32] 70.62 92.69 81.23 32.73 72.61 42.81 0.5880 0.1788
DeiT-III [32] + DVT 73.36 93.34 83.74 36.57 74.44 49.01 0.5891 0.1802

EVA02 [13] 71.52 92.76 82.95 37.45 72.78 49.74 0.6446 0.1989
EVA02 [13] + DVT 73.15 93.43 83.55 37.87 75.02 49.81 0.6243 0.1964

CLIP [26] 77.78 94.74 86.57 40.51 76.44 52.47 0.5598 0.1679
CLIP [26] + DVT 79.01 95.13 87.48 41.10 77.41 53.07 0.5591 0.1667

DINOv2 [22] (reprod.) 83.60 96.30 90.82 47.29 80.84 59.18 0.4034 0.1238
DINOv2 [22] + DVT 84.84 96.67 91.70 48.66 81.89 60.24 0.3943 0.1200

(a) Low-resolution feature map (b) High-resolution zero-tensor feature map (c) High-resolution feature map

(a) DINOv2 (b) CLIP

(c) DeiT-III (d) EVA02

(e) DINOv2+register (f) DINO

Input Original 
PCA

Original 
Feature L2 Norm

Denoised 
PCA

Denoised 
Feature L2 Norm Input Original 

PCA
Original 

Feature L2 Norm
Denoised 

PCA
Denoised 

Feature L2 Norm

Figure 5. Emerged object discovery ability. We present qualitative results for DVT’s learned denoiser outputs. Features are visualized
using PCA and L2 feature norms, comparing original ViT features with our denoised features across different algorithms. Noticeably, DVT
denoised features show higher feature norms on objects of interest and reduced high- (see a, b) and low-norm artifacts (see c, d).
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Table 3. Ablation study on per-image denoising using KNN seg-
mentation evaluation protocol on the VOC2012 validation set.

Representations mIoU

(a) DINOv2 65.35

(b) F 67.81
(c) F + G 70.82
(d) F + G + ∆̂ 70.94

Table 4. Ablation study on the architectural design of generalizable
denoiser. We report the mIoU of the VOC2012 validation set.

Denoiser architectures mIoU

(a) DINOv2 (reproduced) 83.60

(b) conv1x1 82.15
(c) conv3x3 83.27
(d) Single Transformer Block + PE. 84.84
(e) Single Transformer Block 84.81

PCA visualizations and L2 norms of the feature maps. Post-
denoising, not only are the artifacts removed, but also the
objects of interest become more distinctly visible. This en-
hancement in object clarity is not an original goal of DVT
but emerges as the outcome of our method. It is noteworthy
that not all pre-trained ViTs initially demonstrate this object
discovery ability, as seen in Figure 5-(b,c,d) “Original PCA”;
however, this capability is remarkably evident after the de-
noising process. It intriguingly implies an intrinsic property
of denoised ViTs — finding salient objects.

5.4. Ablation Study

In this section, we provide ablation studies to understand the
importance of different components in our proposed DVT.
We use DINOv2-base [22] for the experiments here.

Factorization. We ablate our per-image denoising method
using a K-Nearest-Neighbor (KNN) pixel segmentation eval-
uation protocol on the VOC2012 dataset. Specifically, we
collect class centroids from each training image by masked
pooling to construct a memory bank using ground truth anno-
tations. Then, for each pixel in a validation image, we clas-
sify it based on its 20 nearest neighbors in the memory bank.
We report the mIoU on the validation set. Table 3 shows the
results. We observe that combining the artifact field G and
the residual term ∆̂ yields the best result (d). Omitting both
these elements reduces our approach to merely utilizing a
neural field F to learn multi-crop ensembled image features,
without addressing artifacts (b). While this variant shows
improvement, it falls behind our proposed method by a large
margin, underscoring the importance of removing artifacts.

Generalizable denoiser. We explore alternative architec-
tural designs for our generalizable denoiser in Table 4. We
study four variations: 1) our default setting, which incor-
porates a single Transformer Block with new learnable po-
sition embeddings; 2) our default setting but without posi-
tion embeddings; 3) a multi-layer convolution denoiser with
a Conv1x1-ReLu-Conv1x1-ReLu-Conv1x1 struc-
ture, and 4) a multi-layer convolution denoiser with a
Conv3x3-ReLu-Conv3x3-ReLu-Conv3x3 structure.
We observe that the denoisers based on convolutional struc-
tures (b, c) do not yield good results, with the conv1x1 setting
performing the worst (c). Moreover, we note that our default
setting with a Transformer block and learnable positional em-
bedding achieves the best result (d), and removing learnable
position embeddings obtains similar numerical performance
(e), but we find that our default setting (Transformer Bloack
+ PE.) is more sensitive to local details such as text and wa-
termark, as shown in Figure S7. Additionally, qualitative
comparisons in Figure S7 highlight that convolution-based
denoisers typically struggle with removing artifacts.

6. Discussion and Future Works
Our work has introduced DVT, a robust method leveraging
neural fields to eliminate feature artifacts from ViTs. We
pinpoint positional embeddings as the primary source of
these artifacts, despite their importance in various vision
tasks. Utilizing a neural-field optimization process, DVT
efficiently extracts clean features from the noise-riddled fea-
ture maps of existing ViTs. Building upon this, we propose a
scalable feature denoiser, eliminating the need for individual
image optimizations. When learned from a few denoised
samples, our denoiser generalizes well to unseen data, and
improves pre-trained ViTs by large margins in dense vision
tasks. Furthermore, our research suggests several avenues for
future exploration: Understanding the role of positional em-
beddings in ViTs could inform the design of next-generation
deep learning architectures. Redefining positional embed-
dings within ViTs and Transformers is also an imperative
problem. Finally, devising a method to denoise pre-trained
ViT features without additional training presents a fascinat-
ing challenge.
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Denoising Vision Transformers

Supplementary Material

In the appendix, we include comprehensive implementa-
tion details (§A) as well as discussions on the understanding
of ViTs (§B), focusing specifically on the nuances of position
embeddings. Following this, we discuss the limitations of
this work and propose avenues for future exploration (§C).

A. Implementation Details

A.1. Denosing with Neural Fields

Recall that we decompose the output feature map from a pre-
trained ViT into three components: y ≈ F(A) + G + h(y),
where F is a s semantic field, G is an artifact field, and h is a
residual predictor. We describe their implementation details
below.

Neural field F . To facilitate efficient learning, we use
InstantNGP [20], a type of compact and fast coordinate
network, parameterized by learnable multi-level hash grids
H and a lightweight MLP ϕ(·), to learn F . It takes as in-
put a normalized 2D coordinate (i, j), within the range of
[0, 1], and outputs its corresponding feature vector, i.e.,
F(i, j) = ϕ (H(i, j)). We refer readers to [20] for a more
detailed understanding of the learnable hash grids. In our im-
plementation, we use a hash encoding resolution that spans
from 24 to 210 with 16 levels. Each hash entry has a channel
size of 8. The maximum number of hash entries of each res-
olution is 220. For the lightweight MLP, we use a two-layer
Linear-ReLu-Linear structure. The hidden dimension
of this MLP is half the size of the output feature dimension,
and the output feature dimension itself corresponds to the
feature dimension of the ViT being studied (e.g. 768 for a
ViT-B and 1024 for a ViT-L).

Artifact field G. For all experiments, we use a 2D learn-
able feature map of size C × K × K to learn the input-
independent noise, where C corresponds to the feature di-
mension of the studied ViT, and K is the spatial size. We
computeK by (H−P )/S+1, whereH is the height&width
of input images (which we resize to be square), P is the patch
size, and S is the stride size used in the model. To accom-
modate ViTs with different patch sizes, we set H to 518 for
those trained with a patch size of 14, and 512 for ViTs with a
patch size of 16, resulting in K values of 37 and 32, respec-
tively. Note that this feature map, G, can be interpolated to
fit any arbitrary image size. We specifically choose these K
values to minimize the need for interpolation during training,
thus enhancing training efficiency.

Residual predictor h. The residual predictor is structured
as a 3-layer MLP with ReLU activation after the hidden
layers. The hidden dimension is set to be one-quarter of the
channel dimension of the ViT being studied.

Optimization. In our implementation, we extract N =
768 crops from each image, applying random augmentations,
which include random flipping with a probability of 0.5, and
random resizing and cropping, where the size of the crop is
scaled between 0.1 to 0.5 of the original image size and the
aspect ratio is maintained between 3/4 and 4/3.

The coefficients in our loss function (Equation (6)) are
set as α = 0.1 and β = 0.02. We use Adam optimizer,
with a learning rate of 0.01 and a LinearLR decay strategy.
Our models are trained for 20,000 iterations. Each itera-
tion will process 2048 randomly sampled pixels from the
pre-extracted feature maps. Note that due to the efficient
implementation of F and the pre-extraction of patch features,
our denoising typically takes about 100-160 seconds to finish
(including the feature extraction time). This rapid optimiza-
tion process allows us to easily amortize the denoising cost
with parallel computes, thereby ensuring the practicality and
applicability of our method in various scenarios.

We use the same hyperparameters for all experiments
without any specific tuning. See Figures S9 to S15 for vi-
sualizations of some examples of our per-image denoising
outputs.

A.2. Generalizable Denoiser

Optimization To train the denoiser, we optimize the loss
function defined in Equation (11). Note that our approach
does not necessitate re-training ViTs; instead, it only op-
timizes the newly initialized parameters. The denoiser is
trained over 10 epochs with a batch size of 64, utilizing the
AdamW optimizer with a learning rate of 2e-4 and a cosine
learning rate scheduler. The denoiser training typically takes
about 2 hours on 8 GPUs.

A.3. ViT Models

Model identifiers. We provide the timm model identifiers
of the ViTs studied in this paper in Table S5. For experiments
with large input image sizes (e.g. using the 512-sized images
as input to a model trained with 224-image-resolution), we
always resize the position embeddings using bicubic interpo-
lation to accommodate the increased size.

A.4. Correlation

In the main text, we mention the correlation between artifacts
and their positions in images without detailed context, which
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(a) DINOv2

(b) EVA02

(c) DeiT-III

(d) CLIP

Figure S6. Feature map visualizations: positional embeddings (PE) and a cat image in different ViTs. We visualize the feature maps
across different layers (1 to 12) of various pre-trained ViT-base models, displayed sequentially from left to right. For each panel, the top row
shows the feature maps generated by inputting zero-tensors, highlighting the influence of PE alone. The middle row showcases the feature
norm of the PE feature map. The bottom row presents the feature map for a sample cat image, allowing for a comparison that reveals visual
correlations between the artifacts in general image feature maps and the PE feature map.
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Input (a) DINOv2 (c) conv3x3 (d) Single Xformer w/t PE (e) Single Xformer w/o PE (b) conv1x1

≈

≈

Figure S7. Qualitative comparison of different denoiser architecture designs. Convolution-based denoisers typically do not yield good
performance (b, c). We empirically find that the denoiser with learnable new positional embeddings (PE) is sensitive to subtle details (see the
blue and red rectangles and arrows). “Xformer”: Transformer block.

Table S5. timm model indentifiers.

Model Model identifier

DINOv2 [22] vit base patch14 dinov2.lvd142m
Register [8] vit base patch14 reg4 dinov2.lvd142m
DINO [4] vit base patch16 224.dino
MAE [15] vit base patch16 224.mae
EVA02 [13] eva02 base patch16 clip 224.merged2b
CLIP [26] vit base patch16 clip 384.laion2b ft in12k in1k
DeiT-III [32] deit3 base patch16 224.fb in1k

we now provide. Our focus is on quantifying the correlation
between different features and their positions within an im-
age. To analyze this correlation, we employ the maximal
information coefficient (MIC), a metric originally used for
measuring the strength of linear or non-linear associations
between two scalar variables. To adapt MIC for our pur-
pose, we compute the association between high-dimensional
features f and their positions. We calculate this by taking
the maximal MIC across all channels of f and averaging the
MICs of the x and y coordinates:

maxc∈C MIC(f(x, :), x) + maxc∈C MIC(f(:, y), y)
2

,

(S12)

where f(x, :) denotes the feature vector on the x-coordinate,
f(:, y) at the y-coordinate, and C is the channel size of f . For
hyperparameters of scalar MIC, we set B = (H ×W )0.6:

MIC(X;Y) = max
|X||Y|<B

I[X;Y]

log2 (min (|X|, |Y|))
, (S13)

where I[X;Y] denotes the mutual information between two
random variables X and Y. We compute this metric from
100 randomly selected samples from the ImageNet dataset.

Our analysis includes a comparison of MIC values for the
decomposed noise map, the original noisy ViT features, and
the denoised, artifact-free features. The results, present in
Table 1 of the main paper, reveal that the decomposed noise
map exhibits the highest correlation with image positions.
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Figure S8. Features from Weak Artifact Algorithms.

The noisy features, entangled with noise artifacts originating
from the position embeddings, display the second-highest
positional correlation. In contrast, the noise-free features
denoised by our method show the lowest correlation with
positions, demonstrating the effectiveness of our decomposi-
tion approach in removing such artifacts.

A.5. Feature Qualitative Results

Algorithms producing mild artifacts. We additionally
visualize the features for algorithms with weak artifacts in
Figure S8. We empirically observe that ViTs trained using
both MAE and DINO exhibit very few visible artifacts in
their feature (center column). Figures S14 and S15 show
additional visualizations of the decomposed noise map and
the learned residual terms of MAE and DINO, respectively.
We note that decomposed noise maps from these two models
typically manifest low-frequency patterns and the residual
terms do not yield pronounced patterns.

Additional visualizations. Additional visualizations of
the feature maps at all layers of ViT models are shown in
Figure S6. Observe that the artifact is present in almost
all layers of the models. See Figures S9 to S15 for more
visualizations.

B. Further Discussion into ViT Understanding

High-norm vs. Low-norm patterns. The concurrent re-
search [8] identifies artifacts in ViTs by examining the fea-
ture norm. However, our findings, as illustrated in Figure 5
“Original Feature L2 Norm” columns (e.g., there are many
empty dark patches in the DEiT-III visualization (c)), reveals
the existence of “low-norm” patterns that also behave as
artifacts, especially in models like CLIP [26] and DeiT-III
[32]. In addition, the research [8] concludes that the “high-
norm” patterns are particularly pronounced in large and
sufficiently trained ViTs, a trend that is not observed in small
models, but our analysis showcases the presence of artifacts
in almost all ViTs. These discoveries suggest that solely
assessing artifacts based on feature norms does not provide
a comprehensive understanding. Consequently, this calls
for more in-depth research to fully understand the nature of
artifacts in ViTs and how they impact model performance
and behavior. Such insights are crucial for developing more
robust, next-generation ViTs, particularly in the context of
handling and interpreting features in ViTs.

Different positional embeddings. The models studied in
this paper cover three major types of position embeddings
(PEs) — fixed sinusoidal PE (e.g., MAE [15]), learnable ad-
ditive PE (e.g., DINO [4], DINOv2 [22], CLIP [26], DeiT-III
[32]), and learnable Rotary PE (e.g. EVA02 [13]). Intrigu-
ingly, our observations reveal that, regardless of the type of
PE employed, artifacts are present in all the studied ViTs,
though with varying extents. The emergence of artifacts
seems to be a common characteristic across different PE
types. Although the fundamental underlying reason behind
this property remains unclear, our work identifies this issue
and proposes a denoising method to rectify these artifacts.

Alternative approaches for position embeddings. A key
component of our hypothesis as to why artifacts exist in
ViT features is the use of positional embeddings. Currently,
all ViTs leverage either fixed [15] or learned [3, 22, 32]
positional embeddings that are added to the input tokens
of the Transformer model. Alternatively, Rotary Positional
Embeddings [30], which were originally proposed in the
language domain for better sequence length scaling, does
not directly add anything to the input tokens. Instead, this
method encodes the absolute position with a rotation matrix
and crucially incorporates the explicit relative position de-
pendency in the computation of the attention values. While
EVA02 [13] does leverage this kind of positional embedding,
the training process involves distilling from the already-noisy
features from CLIP. Indeed, the noisy artifacts of the EVA02
model bear semblance to those from CLIP models, especially
in the later layers (Figure S6). Thus, while the positional
embedding selection is promising, more research should be
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done towards ViTs that leverage these Rotary PE for arti-
fact reduction. Similarly, the positional embedding used in
the T5 language model [27] does not add a positional em-
bedding directly to the input; instead, it learns a bias that
is added to the key-query dot-product in the self-attention
step and does not include explicit position information into
the self-attention value vectors. ALiBi [23], used in many
large language models (LLM), also does not do so, and in-
stead adds a static bias to the query-key dot product. These
methods eliminate the input-independent portion of the final
output feature while retaining the benefits of the position
embedding. For future work, we suggest further exploration
into adapting other such positional embedding paradigms
specifically for the image domain.

C. Discussion on Limitations
Our work serves as one of the initial studies into under-
standing the position-based artifacts present in the features
of ViT models. We explore the presence of such artifacts
and propose a method to denoise such artifacts. However,
the underlying reason for why such artifacts exist, and in
which way, remains elusive. In particular, the severity of the
artifacts depends on the algorithm that it is trained on, i.e. DI-
NOv2 has more exaggerated artifacts while MAE has weaker
artifacts. Thus, one direction of exploration is investigating
the training paradigm including the supervision —i.e. local
vs. global — as well as the loss-induced parameter landscape
—i.e. sharp vs. smooth Hessians. Furthermore, a better ar-
chitectural design—e.g. new positional embeddings—may
diminish the severity of the feature artifacts. In this work, we
do not explore modifying the ViT’s design; however, more
study into its positional embeddings and the effect on down-
stream features should prove interesting. Ultimately, we
believe our findings are intriguing to the community and fur-
ther research is needed to better understand this fundamental
problem.
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Figure S9. Visualization of DINOv2 [22] per-image denoising. We visualize (a) the input image, (b) the similarity between the central red
patch and other patches, (c) the original noisy feature map, (d) the denoised feature map, and (e) the similarity post-denoising. Additionally,
we show the (f) decomposed noise map G and (g) its L2 norm as well as (h) the L2 norm of the predicted residual term h.
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Figure S10. Visualization of CLIP [26] per-image denoising. We visualize (a) the input image, (b) the similarity between the central red
patch and other patches, (c) the original noisy feature map, (d) the denoised feature map, and (e) the similarity post-denoising. Additionally,
we show the (f) decomposed noise map G and (g) its L2 norm as well as (h) the L2 norm of the predicted residual term h.
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Figure S11. Visualization of EVA02 [13] per-image denoising. We visualize (a) the input image, (b) the similarity between the central red
patch and other patches, (c) the original noisy feature map, (d) the denoised feature map, and (e) the similarity post-denoising. Additionally,
we show the (f) decomposed noise map G and (g) its L2 norm as well as (h) the L2 norm of the predicted residual term h.
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Figure S12. Visualization of DeiT-III [32] per-image denoising. We visualize (a) the input image, (b) the similarity between the central red
patch and other patches, (c) the original noisy feature map, (d) the denoised feature map, and (e) the similarity post-denoising. Additionally,
we show the (f) decomposed noise map G and (g) its L2 norm as well as (h) the L2 norm of the predicted residual term h.
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Figure S13. Visualization of DINOv2 with Registers [8] per-image denoising. We visualize (a) the input image, (b) the similarity between
the central red patch and other patches, (c) the original noisy feature map, (d) the denoised feature map, and (e) the similarity post-denoising.
Additionally, we show the (f) decomposed noise map G and (g) its L2 norm as well as (h) the L2 norm of the predicted residual term h.
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Figure S14. Visualization of DINO [4] per-image denoising. We visualize (a) the input image, (b) the similarity between the central red
patch and other patches, (c) the original noisy feature map, (d) the denoised feature map, and (e) the similarity post-denoising. Additionally,
we show the (f) decomposed noise map G and (g) its L2 norm as well as (h) the L2 norm of the predicted residual term h.
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Figure S15. Visualization of MAE [15] per-image denoising. We visualize (a) the input image, (b) the similarity between the central red
patch and other patches, (c) the original noisy feature map, (d) the denoised feature map, and (e) the similarity post-denoising. Additionally,
we show the (f) decomposed noise map G and (g) its L2 norm as well as (h) the L2 norm of the predicted residual term h.
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