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Fig. 1: Denoising Vision Transformers (DVT) effectively suppresses noisy artifacts
in the visual features of all Vision Transformers (ViTs) we have tested and improves
performance on a broad spectrum of dense prediction tasks, including semantic seg-
mentation, depth estimation, object detection, and object discovery. Our evaluation
encompasses a representative set of ViTs, including DINOv2 [25], DeiT-III [36], EVA-
02 [13], CLIP [27], and DINOv2-reg [7]. We visualize the features before and after DVT,
colored via principal component analysis (PCA). Best viewed in color. Right: We re-
port the downstream dense prediction task performances, averaged over all models.

Abstract. We study a crucial yet often overlooked issue inherent to Vi-
sion Transformers (ViTs): feature maps of these models exhibit grid-like
artifacts (“Original features” in Fig. 1), which hurt the performance of
ViTs in downstream dense prediction tasks such as semantic segmenta-
tion, depth prediction, and object discovery. We trace this issue down
to the positional embeddings at the input stage. To mitigate this, we
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propose a two-stage denoising approach, termed Denoising Vision Trans-
formers (DVT). In the first stage, we separate the clean features from
those contaminated by positional artifacts by enforcing cross-view fea-
ture consistency with neural fields on a per-image basis. This per-image
optimization process extracts artifact-free features from raw ViT out-
puts, providing clean feature estimates for offline applications. In the
second stage, we train a lightweight transformer block to predict clean
features from raw ViT outputs, leveraging the derived estimates of the
clean features as supervision. Our method, DVT, does not require re-
training the existing pre-trained ViTs, and is immediately applicable to
any Vision Transformer architecture. We evaluate our method on a va-
riety of representative ViTs (DINO, DeiT-III, EVA02, CLIP, DINOv2,
DINOv2-reg) and demonstrate that DVT consistently improves exist-
ing state-of-the-art general-purpose models in semantic and geometric
tasks across multiple datasets (Fig. 1, right, Tabs. 2 to 4). We hope our
study will encourage a re-evaluation of ViT design, especially regarding
the naive use of positional embeddings. Our code and checkpoints are
publicly available in our project page.

1 Introduction

In recent years, Transformers [38] have emerged as the universal architecture for
modern foundation models across many modalities, from text [1,6,28,30] to audio
[20, 41], and images [2, 9]. Among these, Vision Transformers (ViTs) [9] trained
at scale not only achieve state-of-the-art under multiple benchmarks but also
exhibit intriguing behaviors and capabilities across various tasks [3, 16,25,27].

Despite these significant strides made by ViTs, our work reveals a crucial yet
often overlooked challenge: the presence of persistent noise artifacts in ViT out-
puts, observable across various training algorithms [3,9,13,25,27,36] (illustrated
in Fig. 1 left). These artifacts not only compromise visual clarity but also hin-
der feature interpretability and disrupt semantic coherence. For example, Fig. 2
demonstrates that applying clustering algorithms directly on the raw ViT out-
put results in noisy clusters, and the patch feature similarity is less reliable.
Additionally, these artifacts are frequently concealed by seemingly impressive
performance on downstream tasks, thus evading thorough examination or de-
tection by the research community. Addressing these artifacts can unleash the
potential of pre-trained ViTs and lead to substantial performance improvements
(Fig. 1 right). Therefore, our work aims to answer a crucial research question:
Is it feasible to effectively denoise these artifacts in pre-trained ViTs, ideally
without model retraining?

To answer this, we first investigate the origins of these artifacts. We hypoth-
esize that positional embeddings, a fundamental component of ViT architecture,
play a pivotal role in the emergence of these artifacts. Our initial analysis sup-
ports this hypothesis: First, when a zero tensor is fed into a pre-trained DINOv2
model [25], the resulting output is predominantly characterized by similar noise
patterns (Fig. 3-(a, 2)). Second, we observe the absence of such artifacts in the

https://jiawei-yang.github.io/DenoisingViT/
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Fig. 2: Artifacts hurt semantic coherence. For each triplet, we show a feature
map, a K-Means cluster map, and a similarity map of the central patch (red dotted)
with other patches in the image. Observe how artifacts negatively impact clustering
accuracy and similarity correspondences, and how our denoising mitigates these issues.

outputs of a DINOv2 model trained without positional embeddings, which con-
trasts sharply with the standard model outputs (Fig. 3-(a, 1) v.s. (a, 3)). Third,
take a video with continuous frames as an example (Fig. 3-(c)). Despite the sig-
nificant differences in the context of various input frames, the artifacts maintain
a generally consistent relative position in the images (Fig. 3-(c), middle row).

With these insights, we present a two-stage denoising approach, Denoising
Vision Transformers (DVT), to suppress artifacts in pre-trained ViTs. In the first
stage, we obtain clean features from contaminated ones by enforcing cross-view
feature consistency and artifact consistency with neural fields on a per-image
basis. This per-image denoising process extracts noise-free features from raw
output, providing these denoised ViT features for offline applications. In the
second stage, we train a lightweight denoiser model, consisting of a single trans-
former block, to predict the denoised features from the raw ViT outputs. More
importantly, this denoiser can be seamlessly integrated into pre-trained ViTs
without extensive re-training, providing denoised features for online applications
and generalizing well to unseen data.

We conduct empirical evaluations to demonstrate the efficacy of DVT on six
representative ViTs: DINO [3], DINOv2 [25], DINOv2 with Register (DINOv2-
reg) [7], DeiT-III [36], EVA-02 [13,14], and CLIP [27]. These evaluations demon-
strate significant improvements in performance across various dense prediction
vision tasks such as semantic segmentation, depth estimation, object detection,
and object discovery. In summary, our contributions are:

– We identify and highlight the widespread occurrence of noise artifacts in ViT
features, pinpointing positional embeddings as a crucial underlying factor.
To the best of our knowledge, we are the first to provide such an analysis.

– We introduce a tailored noise model for ViTs, along with a neural field based
denoising technique. This combination effectively isolates and removes noise
artifacts from ViT features.

– We develop a flexible and efficient denoiser that integrates seamlessly with
pre-trained ViTs, enabling real-time applications.

– Our approach results in substantial performance improvements across vari-
ous ViTs and downstream dense prediction tasks (Fig. 1, right, Tabs. 2 to 4).
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Fig. 3: Impact of positional embeddings in ViTs. (a) Comparison between DI-
NOv2 ViTs [25] trained with and without positional embeddings ((“ViT” v.s. “ViT∗”).
We show feature maps from (1) a standard ViT, (2) a ViT using only positional embed-
dings (PE) as input, emphasizing the emergence of artifacts, and (3) a PE-free ViT∗,
displaying a clear absence of these artifacts. In the figure, “Patch”: patch embedding,
“PE”: position embedding. (b) Illustration of how ViT retains and propagates the posi-
tional embeddings. (c) Despite significant differences in the context of various frames,
the artifacts largely maintain a consistent relative position in the images (central row).
Our DVT effectively denoises these artifacts, demonstrated in the final row.

2 Related Works

General purpose features from Vision Transformers. Transformers have
been used extensively across multiple domains as general-purpose feature extrac-
tors [1,6,8,29,30,37]. Vision Transformers [9] (ViTs) pre-trained via supervised
learning [18, 36, 39] or self-supervised learning [3, 16, 25, 46] have demonstrated
strong generalizability to various downstream visual tasks, even without fine-
tuning. However, we show that ViTs trained with diverse training objectives
exhibit commonly observed noise artifacts in their output feature maps. These
artifacts are often overlooked in practice because their presence cannot be simply
reflected by image classification accuracy. Thus, our work focuses on evaluating
pre-trained ViTs for dense recognition tasks such as segmentation, depth estima-
tion, and object discovery. We demonstrate how these artifacts adversely affect
dense recognition tasks, thereby motivating our method to mitigate them.

ViT artifacts. Our work studies the noise artifacts in ViTs, an issue that has
been previously observed but often remains unexplored. These artifacts manifest
as noisy attention maps in supervised ViTs (i.e., ViTs do not attend to objects
of interest well) [3, 5]. Concurrently with our study, two recent studies simi-
larly have also identified artifacts in self-supervised ViTs [7, 44]. Specifically, [7]
describe these as “high-norm” patches in low-informative background regions,
hypothesizing their occurrence is limited to large (e.g . ViT-large or greater)
and sufficiently trained ViTs. However, our analysis indicates that this may not
be the full picture, as we observe similar artifacts in small or base ViTs that
cannot be easily identified by extremely high feature norm values. Instead, we
find a strong correlation between the presence of artifacts and the use of posi-
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tional embeddings in ViTs. This finding suggests that artifacts are not strictly
confined to certain model sizes or training scales but are more fundamentally
linked to the inherent design of ViTs. Moreover, unlike the method proposed
by [7] that retrains ViTs with register tokens [15,43] from scratch, our approach
directly denoises pre-trained models without retraining. Users can dynamically
enable or disable the plugged-in denoiser as needed. Lastly, we note that some
weak artifacts still exist in DINOv2 models trained with registers [7] (see Fig. 1
DINOv2-reg and appendix), and our DVT can effectively denoise them, improv-
ing the performance of DINOv2-reg.

3 Preliminaries

Forward process in ViTs. Despite varying training approaches, the ViT ar-
chitecture has mostly remained consistent with its original design as presented
in [9] and [39]. The forward process of a ViT, depicted in Fig. 3-(b), starts
by converting images into 2D patches and then embedding them, followed by
a forward process of Transformer blocks. Specifically, an image x ∈ RH×W×C

is first divided into patches xp ∈ RN×(P 2·C), where (H,W ) denotes the image
resolution, P is the patch resolution, C represents the number of pixel channels
and N is the number of total patches. These patches are then mapped to D
dimensions using a trainable linear projection E ∈ R(P 2·C)×D to generate patch
embeddings. To inject spatial information, positional embeddings, which encode
patch coordinates and are denoted Eipos, are added to the patch embeddings.
Formally, the forward process of a ViT is as follows:

z0 = [xcls +Ecls
pos;x

0
pE+E0

pos; · · · ; xN−1
p E+EN−1

pos ] (1)

z′l = MSA (LN(zl−1)) + zl−1, l = 1 · · ·L (2)
zl = MLP (LN(z′l)) + z′l, l = 1 · · ·L (3)
y = LN(zL) (4)

Here, xcls and Ecls
pos represent the class token and its positional embedding, re-

spectively, L denotes the number of layers, and LN stands for layer normal-
ization. Multi-head self-attention layers and multi-layer perceptron layers are
termed MSA and MLP, respectively. Note how the input-independent positional
embeddings function as a spatial inductive basis, intermixing with inputs and
propagating throughout ViT.

4 Denoising Vision Transformers

In this section, we start by analyzing ViT outputs to motivate our approach
(§4.1). Then, we introduce our per-image denoising method, which removes arti-
facts and produces noise-free features (§4.2). Lastly, we explain how the noise-free
features are utilized as pseudo-labels to train a generalizable denoiser (§4.3). Our
method pipeline is depicted in Fig. 4.
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Fig. 4: Method Overview. DVT consists of a two-stage denoising pipeline. (a) In
the first stage, our method decomposes the raw feature of an image crop into a noise-
free semantics term F , an input-independent, position-related artifact term G, and an
additional residual term ∆. (b) In the second stage, we train a generalizable denoiser
to predict clean features from their original features. At inference time, only a single
feedforward is needed to obtain denoised features.

4.1 Factorizing ViT Outputs

Our method is grounded in the principle that ideal visual features should be in-
herently translation and reflection invariant, i.e., the features of an object should
remain consistent, regardless of changes in the viewing window, size, and orien-
tation. However, as indicated in Eqs. (1) to (4) and Fig. 3-(b), ViTs intermix
patch embeddings with positional embeddings, thereby breaking the transfor-
mation invariance of visual features. This breach of invariance might not appear
immediately problematic, but our investigations, illustrated in Fig. 3-(a) and (c),
reveal a distinct correlation between the inclusion of positional embeddings and
the emergence of undesirable artifacts in ViT outputs. Particularly, the middle
row of Fig. 3-(c) shows that these artifacts persist with minor variation across
different images, highlighting their consistency independent of the input content.

These observations motivate us to decompose ViT outputs into three terms:
(1) an input-dependent, noise-free semantics term f(x)1; (2) an input-independent
artifact term related to spatial positions g(Epos); (3) and a residual term that
accounts for the interdependence of semantics and positions h(x,Epos). The de-
composition is formally expressed as:

ViT(x) ≈ f(x) + g(Epos) + h(x,Epos) (5)

This factorization is universally applicable to all ViTs. For example, in sce-
narios where the output feature map is spatially invariant (e.g ., no positional
1 Throughout this paper, we use “noise” and “artifact” interchangeably.
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embedding is used), the sum of g and h becomes a constant bias term that can
be merged into f .

4.2 Per-image Denoising with Neural Fields

Directly addressing the above decomposition problem within a single forward
pass in a ViT is impractical due to the intertwined nature of output features. To
overcome this, we exploit the consistencies in cross-view features and artifacts:
(1) Feature consistency refers to the transformation invariance of visual features,
where despite the varied spatial transformations, the semantic content remains
invariant; (2) Artifact consistency means that the input-independent artifact re-
mains observable and constant across all transformations. Formally, consider an
image x and a set of its randomly transformed views T (x) = {t0(x), t1(x), · · · },
where each transformation ti is drawn from a distribution of random augmen-
tations T , consisting of random resizing, cropping, and flipping. Our goal is to
derive a mapping f such that the semantic features obtained from any trans-
formed view, f (t (x)), are equivalent to the transformed original semantic fea-
tures, t (f(x)); that is, f (t (x)) = t (f(x)) with t ∼ T . Next, we describe our
approach for learning the different terms in Eq. (5) in conjunction to derive f .
Neural fields as feature mappings. At the core of our approach is to have
a holistic image semantics representation F , for each individual image, along-
side a spatial artifact feature representation, G, shared by all transformed views.
The holistic image feature representation F is designed to capture spatially in-
dependent, artifact-free semantics, while G should encode position-dependent
but input-independent noise. We use coordinate networks, known as neural
fields [17,19,23,32,35,44], to actualize F and G. Specifically, we define f(t(x)) =
F(coords(t(x))), where coords(·) extracts the pixel coordinates of the trans-
formed views relative to the original image x, and g(Eipos) = G(i), with i ∈
{0, · · · , N − 1} denoting the patch index. For simplicity, we use G to denote the
2D artifact feature map reshaped from the 1D ordered sequence {G(i)}N−1

i=0 . We
refer to F and G as the semantics field and the artifact field, respectively.
Learning the decomposition. We learn the semantics field F , the artifact
field G, and the residual term ∆ by minimizing a regularized reconstruction loss:

Lrecon = Ldistance + αLresidual + βLsparsity (6)
Ldistance = 1− cos(y, ŷ) + ∥y − ŷ∥2, (7)

Lresidual = ∥sg
(
y − ŷ′

)
− ∆̂∥2, Lsparsity = ∥∆̂∥1 (8)

where y = sg (ViT (t (x))) , ŷ = ŷ′ + sg(∆̂) (9)

ŷ′ = Fθ(coords(t(x))) + Gξ, ∆̂ = hψ(y) (10)

Here, cos(·, ·) denotes the cosine similarity, sg(·) represents the stop-gradient
operation, t(·) is a random transformation sampled from T , and θ, ξ and ψ are
the learnable parameters. Our loss function is designed to encourage ∆̂ to remain
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minimal by imposing a sparsity regularization, thereby allowing ŷ′ to represent
as much of the ViT output as possible. The use of stop-gradient operators is
to avoid trivial solutions, such as identity mapping. The reconstructed feature
from our method is ŷ = Fθ (coords (t (x)))+Gξ+sg (hψ (ViT (t (x)))), each term
corresponding to f, g, and h as defined in Eq. (5).
Optimization. We break our optimization process into two phases, each span-
ning half of the total training iterations. In the first phase, we train Fθ and Gξ
using only Ldistance, allowing them to capture a significant portion of the ViT
outputs. After completing half of the optimization iterations, we freeze Gξ and
continue to train Fθ alongside hψ using Lrecon for the rest iterations. The coef-
ficients α and β in Lrecon balance loss scales and regulate the residual term to
prevent ∆̂ from over-explaining the outputs.

4.3 Generalizable Denoiser

Our per-image denoising method can already effectively remove artifacts from
ViT outputs, yielding visually stunning denoised feature maps. The problems
we are left with are run-time efficiency and distribution shifts. Specifically, the
per-image denoising process is suitable for offline applications but undesired for
real-time applications, and individually denoised feature maps can lead to feature
distribution shifts due to sample bias, which hampers the feature coherence
across images. To address these issues, we introduce a generalizable denoiser.

After applying per-image denoising, we accumulate a dataset of pairs con-
sisting of noisy ViT outputs y and their denoised counterparts F , denoted as
B = {(yi,Fi)}Bi=1. We then train a denoiser network Dζ to predict noise-free
features from raw ViT outputs, i.e., F̂ = Dζ(y). The loss function is:

LDVT
distance = 1− cos (Dζ (y) ,F) + ∥Dζ (y)−F∥2 (11)

Our generalizable denoiser is implemented as a single Transformer block, sup-
plemented with additional learnable positional embeddings that are applied post
the forward pass of a ViT. This design aims to mitigate the input-independent
artifacts. To predict denoised features, the outputs from a pre-trained ViT are
added with these positional embeddings and then processed through the Trans-
former block.

Notably, this learned denoiser is lightweight, thus adding negligible latency
to the original ViT and facilitating real-time applications. It also learns to gen-
eralize across samples, mitigating the distribution shift issue in the per-image
denoising process.

5 Experiments

In this section, we first explore if ViTs trained with different objectives all have
artifacts. Then, we evaluate the effectiveness of our generalizable denoiser on
dense prediction tasks. For all experiments, we default to using ViT-base models
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Fig. 5: Visual analysis of ViT output features and denoised features. (a) Vi-
sualizations of the feature maps from all layers of a DINOv2 [25] ViT-base model.
Notably, the artifacts in the feature maps derived from the cat image exhibit a strong
visual correlation with those from the zero-tensor inputs. (b) Visualizations of the
decomposed artifacts, the original features, and the denoised features across various
layers of DINOv2 ViTs. We observe similar patterns in differently-sized models.

with patch sizes of 14 or 16, depending on the availability of their implementa-
tions and model weights in PyTorch Image Models (timm [42]). We defer all the
implementation details to the appendix.

5.1 Artifacts in ViTs

Positional artifacts in different ViTs. We visualize feature maps from dif-
ferently pre-trained ViTs in Fig. 1. Among these, DINOv2 [25], a state-of-the-art
vision foundation model with excellent performance on downstream tasks, dis-
plays clear position-related artifacts. Additionally, DeIT-III [36], trained with
image class labels, and CLIP [27], trained by text-image alignment, also exhibit
noticeable artifacts. Furthermore, EVA02 [13], which distills local patch features
from a pre-trained CLIP model using masked image modeling, also has clear fea-
ture artifacts. In ViTs we have tested, our proposed DVT successfully mitigates
these artifacts (“Original features” vs. “Denoised features” in Fig. 1).

Artifacts in different layers. In Fig. 5, we present a visual analysis of the ar-
tifact decomposition across various layers of DINOv2 ViTs of different sizes (b),
alongside feature maps generated using only zero-tensors as input (a). Notably,
the artifacts decomposed by our DVT show a strong visual resemblance to these
zero-tensor-input feature maps. In addition, we observe that the artifacts vary
across layers: the shallower layers predominantly exhibit low-frequency patterns,
whereas the deeper layers are characterized by high-frequency patterns. Impor-
tantly, these patterns are consistent across ViTs of different sizes (e.g ., from
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Table 1: Comparison of features correlation to spatial positions. We report the
maximal information coefficient (MIC) between grid features and their coordinates.

Before denoising After denoising
Method Raw features Artifacts term G Semantics term F
DINOv2 [25] 0.44 0.54 0.22
DeiT-III [36] 0.34 0.32 0.06
CLIP [27] 0.11 0.14 0.08

ViT-small to ViT-large), diverging from the hypothesis in [7] that only large
ViTs would display such patterns.

Correlation between artifacts and positions. Beyond visual qualitative
inspection, we aim to quantitatively analyze the correlation between artifacts and
their positions. Similar to [40], we use the maximal information coefficient (MIC)
to measure the dependency between grid features and their normalized patch
coordinates (See appendix for more details). This metric indicates how much
patch features depend on their spatial positions and semantic content. As shown
in Tab. 1, both the original ViT outputs and the decomposed artifacts exhibit a
higher spatial correlation than the denoised semantic features, irrespective of the
training methodology employed. These results support our hypothesis about the
significant role of positional embeddings in the emergence of artifacts. Note that
there is no “ground-truth” quantitative metric to to definitively quantify these
patterns; hence, our reported numerical results should be viewed as empirical
indicators, akin to the “high-norm” indicator used in [7].

5.2 Evaluation on Downstream Task Performance

We evaluate our method in dense recognition tasks, including semantic segmen-
tation, monocular depth estimation, object detection, and object discovery. It is
important to note that there is no direct competitor for these tasks in our study.
Instead, our focus is on comparing the performance of pre-trained ViTs before
and after applying our DVT. For all the models in the main experiments, we use
10k denoised samples randomly selected from the VOC2012 and the VOC2007
datasets, excluding their validation samples, to train generalizable denoisers.

Semantic segmentation. We follow [7, 25] to evaluate our approach in two
semantic segmentation datasets: VOC2012 [12] and ADE20k [45], using a linear
probing protocol, i.e., a linear layer is trained to predict pixels’ class from patch
tokens. Tab. 2 presents the main results. We observe significant and consistent
enhancements in all pre-trained ViTs across datasets. Notably, the DINOv2-
giant, with an 83.0 mIoU on VOC2012 as reported in [25], is outperformed by
our DVT-denoised DINOv2-base model (84.84 mIoU). This improvement is also
evident in the ADE20k dataset, where the DINOv2-giant and DINOv2-large
models attain mIoUs of 49.0 and 47.7, respectively, as reported in [25], while
our denoised base model achieves a 48.66 mIoU. Remarkably, the giant model,
which is 13× larger than the base model, is outperformed by or on par with
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Table 2: Quantitative performance of DVT. DVT improves differently pre-trained
ViTs for dense prediction tasks. We report performance on semantic segmentation
(VOC2012, ADE20K) and depth prediction (NYUd) tasks.

VOC2012 Segmentation ADE20k Segmentation NYUv2 Depth Estimation
Method mIoU(↑) mAcc(↑) mIoU(↑) mAcc(↑) δ1(↑) abs rel(↓)

(a1) DINO [3] 63.00 76.35 31.03 40.33 73.19 0.1701
(a2) DINO [3] + DVT 66.22 78.14 32.40 42.01 73.53 0.1731
(b1) DeiT-III [36] 70.62 81.23 32.73 42.81 72.16 0.1788
(b2) DeiT-III [36] + DVT 73.36 83.74 36.57 49.01 71.36 0.1802
(c1) EVA02 [13] 71.52 82.95 37.45 49.74 63.68 0.1989
(c2) EVA02 [13] + DVT 73.15 83.55 37.87 49.81 68.52 0.1964
(d1) CLIP [27] 77.78 86.57 40.51 52.47 73.95 0.1679
(d2) CLIP [27] + DVT 79.01 87.48 41.10 53.07 74.61 0.1667
(e1) DINOv2-reg [7] 83.64 90.67 48.22 60.52 87.88 0.1190
(e2) DINOv2-reg [7] + DVT 84.50 91.45 49.34 61.70 88.26 0.1157
(f1) DINOv2 [25] 83.60 90.82 47.29 59.18 86.88 0.1238
(f2) DINOv2 [25] + DVT 84.84 91.70 48.66 60.24 87.58 0.1200

our denoised base model. This indicates that the performance gains primarily
stem from effective artifact removal rather than the minor increase in model
parameters of our denoiser network.

Our DVT also increases the performance of the concurrent DINOv2-reg
model [7], where a ViT is trained with dummy learnable register tokens. As
evidenced in Tab. 2, our DVT enhances the performance of both DINOv2 ((f1)
vs. (f2)) and DINOv2-reg ((e1) vs. (e2)). When applying DVT only, DINOv2
shows more improvements compared to using registers ((f2) vs. (e1)); for in-
stance, DINOv2 denoised by DVT achieves 84.84 mIoU in VOC2012 and 48.66
mIoU in ADE20k, surpassing the performance of DINOv2-reg, which achieves
83.64 mIoU and 48.22 mIoU on the respective benchmarks. Furthermore, DVT
can further enhance the performance of DINOv2-reg ((e1) vs. (e2)) on both
datasets (+0.86 in VOC2012 and +1.12 in ADE20k). In addition, DINOv2-
reg [7] requires retraining entire models from scratch using 142M images, while
our approach requires training a single Transformer block using 10k denoised
samples.

Depth estimation. Following [25], we evaluate our method on the NYUv2-
Depth dataset [24] using a linear evaluation protocol (more details in appendix).
As shown in Tab. 2, our method clearly enhances the performance of most pre-
trained ViTs. For context, the DINOv2-large model exhibits a 0.01 RMSE im-
provement over the DINOv2-base model with 3.5× more parameters. Our de-
noiser achieves similar performance gains with 0.08× the parameters of the base
model. These results highlight our method’s efficiency, achieving marked perfor-
mance gains with minimal increases in parameter count.

Object detection. In this experiment, we train ViTDet detectors [21] on the
frozen features following the Faster RCNN framework [31] (more details in ap-
pendix). We train all models on the VOC trainval07+12 subset and report their
mAP metrics on the test2007 subset. Results are reported in Tab. 3. Our approach
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Table 3: Object detection with frozen features. We report the mAP metric on
the VOC object detection benchmark.

Method DINOv2 [25] DINOv2-reg [7] CLIP [27] DeiT-III [36] DINO [3] EVA02 [14]

baseline 81.4 80.9 80.9 75.8 76.4 79.4
baseline + DVT 81.9 (+0.5) 81.4 (+0.5) 81.7 (+0.9) 77.0 (+1.2) 77.1 (+0.7) 80.2 (+0.8)

(a) Low-resolution feature map (b) High-resolution zero-tensor feature map (c) High-resolution feature map

(a) DINOv2 (b) DINOv2-reg

(c) DeiT-III (d) EVA02

(e) DINOv2+register (f) DINO
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Fig. 6: Emerged object discovery ability. The features denoised by our DVT show
higher feature norms on objects of interest.

Table 4: Unsupervised object discovery using LOST [33]. We report the corloc
score across three datasets. Our DVT significantly improves existing models. †: results
quoted from [7]; these models are ViT-large trained on the ImageNet-22k dataset while
our reported results are based on the publicly available ViT-base.

Method VOC2007 VOC2012 COCO20k

(a) †DINOv2 [25] 35.3 40.2 26.9
(b) †DINOv2-reg [7] 55.4 60.0 42.0
(c) DINOv2-reg 38.0 41.5 26.9
(d) DINOv2-reg + DVT 56.1 (+18.1) 59.3 (+17.8) 45.5 (+18.6)
(e) DINOv2 30.8 35.9 23.4
(f) DINOv2 + DVT 58.0 (+27.2) 60.3 (+24.4) 46.7 (+23.3)

shows consistent improvements over the studied ViTs. Notably, DINOv2-reg [7]
shows a slight decrease in object detection performance when compared to the
original DINOv2 [25], while our approach improves it.

Object discovery. Unsupervised object discovery has been a long-standing
problem of interest. An intriguing finding from our experiments is the emerging
capability of object discovery in denoised ViTs. Fig. 6 illustrates this through
PCA visualizations and L2 norms of the feature maps. Post-denoising, not only
are the artifacts removed, but also the objects of interest become more distinctly
visible from the feature norm values. This enhancement in object clarity is not
a goal of DVT but emerges as the outcome of our method.

To quantitatively assess these enhancements, we follow [7] to use LOST [33]
for evaluating object discovery efficacy before and after applying our DVT. We
use feature norms as an indicator of object prominence. We conduct object dis-
covery experiments on PASCAL VOC 2007 [11] and 2012 [12] and COCO20k
datasets [22]. Tab. 4 presents the results. Our DVT significantly improves both
DINOv2 [25] and DINOv2-reg [7] in all the evaluated datasets. In particular,
while the publicly available DINOv2-reg shows some improvements ((c) vs. (e)),
we find that it falls short of the performance levels reported in [7] ((c) vs. (b)).
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Despite this, our DVT achieves more substantial enhancements in object discov-
ery capabilities, even compared to the numbers reported in [7] ((f) vs. (b)).

Table 5: Ablation study on per-
image denoising using KNN seg-
mentation protocol on VOC12val.

Representations mIoU

(a) DINOv2 65.35
(b) F 67.81
(c) F + G 70.82
(d) F + G + ∆̂ 70.94

Table 6: Ablation study on the architectural
design of generalizable denoiser. We report the
mIoU of the VOC2012 validation set.

Denoiser architectures mIoU

(a) DINOv2 (reproduced) 83.60
(b) conv1x1 82.15
(c) conv3x3 83.27
(d) Single Transformer Block + PE. 84.84
(e) Single Transformer Block 84.81

5.3 Ablation Study

In this section, we provide ablation studies to understand the importance of
different components in our proposed DVT.
Factorization. We ablate our per-image denoising method using a K-Nearest-
Neighbor (KNN) pixel segmentation evaluation protocol on the VOC2012 dataset.
Specifically, we collect class centroids from each training image by masked pool-
ing to construct a memory bank using ground truth annotations. Then, for each
pixel in a validation image, we classify it based on its 20 nearest neighbors in
the memory bank. We report the mIoU on the validation set. Tab. 5 shows the
results. We observe that combining the artifact field G and the residual term ∆̂
yields the best result (d). Omitting both these elements reduces our approach to
merely utilizing a neural field F to learn multi-crop ensembled image features,
without addressing artifacts (b). While this variant shows improvement, it falls
behind our proposed method by a large margin, underscoring the importance of
removing artifacts.
Generalizable denoiser. We explore alternative architectural designs for our
generalizable denoiser in Tab. 6. We study four variations: 1) our default set-
ting, which incorporates a single Transformer Block with new learnable position
embeddings; 2) our default setting but without position embeddings; 3) a multi-
layer convolution denoiser with a Conv1x1-ReLu-Conv1x1-ReLu-Conv1x1 struc-
ture, and 4) a multilayer convolution denoiser with a Conv3x3-ReLu-Conv3x3-
ReLu-Conv3x3 structure. We observe that denoisers based on convolutional struc-
tures (b, c) do not yield good results, with the conv1x1 setting performing the
worst (c). Moreover, we note that our default setting with a Transformer block
and learnable positional embeddings achieves the best result (d), and removing
the learnable position embeddings obtains very similar numerical performance
(e). We empirically find that the design of (d) leads to better qualitative visual-
izations, and thus we use this setting.
Scaling behaviors. We study how DVT scales with model sizes and data scales
in Fig. 7. In (a), we see DVT boosts differently-sized ViTs, even allowing ViT-base
to match or exceed ViT-giant performance in semantic segmentation. Overall,
DVT’s scaling behaviors closely align with those of baseline models. In (b), we
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Fig. 7: DVT’s Scaling Behaviors. We study the generalizable denoiser’s performance
for (a) different model sizes, (b) the number of denoised samples used for training
denoisers, and (c) the number of views used when performing per-image denoising.

study the impact of the number of denoised training samples on task perfor-
mance, where DVT shows promising results even with limited training samples
(e.g ., 100∼1000). Note that our denoiser never sees ADE20k and NYU-depth
datasets during training, yet generalizes effectively. In (c), we plot the task per-
formance vs. the number of views used for the denoising. DVT benefits from
more views in first-stage denoising. When training neural fields, more views
enhance performance, while fewer views lead to overfitting. In particular, ag-
gregating views is itself an approach to denoising, which still aligns with our
motivation. We also demonstrate that a denoiser trained on samples denoised
solely by aggregating views via neural fields (F-only in (c)) surpasses baselines
but underperforms the full DVT, which further confirms the effectiveness of our
proposed denoising procedure.

6 Discussion and Future Works

Denoising Vision Transformers (DVT) introduces a robust method leveraging
neural fields to eliminate feature artifacts from ViTs. This work additionally
pinpoint positional embeddings as the primary source of these artifacts, despite
their importance in various vision tasks. Using a neural field optimization pro-
cess, DVT efficiently extracts clean features from the noise-riddled feature maps
of existing ViTs. And using a scalable feature denoiser model, DVT eliminates
the need for individual image optimizations. When learned from individually
denoised samples, our denoiser generalizes well to unseen data and improves
pre-trained ViTs by large margins in dense vision tasks. More broadly, our re-
search suggests several avenues for future exploration: (1) understanding the role
of positional embeddings in ViT could inform the design of next-generation deep
learning architectures, and (2) redefining positional embeddings within ViTs and
transformers is also an imperative problem. Lastly, combining the insights from
our work and those of [7] could lead to a more complete picture of how these
artifacts emerge. We hope that the results presented in this work contribute to
a deeper understanding of artifacts in vision transformers and beyond.
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Supplementary Material:
Denoising Vision Transformers

In the appendix, we provide detailed implementation details in §A, elaborate
on evaluation protocols and additional results in §B, and discuss the understand-
ing of position embeddings in ViT in §C. Lastly, we discuss the limitations of
this work and propose a few avenues for future work in §D.

A Implementation Details

A.1 Denosing with Neural Fields

Recall that we decompose the output feature map from a pre-trained ViT into
three components: y ≈ F(A)+G+h(y), where F is a feature semantic field, G is
an artifact field, and h is a residual predictor. We describe their implementation
details below.
Neural field F . To facilitate efficient learning, we use InstantNGP [23], a type
of compact and fast coordinate network, parameterized by learnable multi-level
hash grids H and a lightweight MLP ϕ(·), to learn F . It takes as input a normal-
ized 2D coordinate (i, j), within the range of [0, 1], and outputs its corresponding
feature vector, i.e., F(i, j) = ϕ (H(i, j)). We refer readers to [23] for a more de-
tailed understanding of the learnable hash grids. In our implementation, we use
a hash encoding resolution that spans from 24 to 210 with 16 levels. Each hash
entry has a channel size of 8. The maximum number of hash entries of each res-
olution is 220. For the lightweight MLP, we use a two-layer Linear-ReLu-Linear
structure. The hidden dimension of this MLP is half the size of the output fea-
ture dimension, which corresponds to the feature dimension of the ViT being
studied (e.g ., 768 for a ViT-base and 1024 for a ViT-large).
Artifact field G. For all experiments, we use a 2D learnable feature map of size
C × K × K to learn the input-independent noise, where C corresponds to the
feature dimension of the studied ViT, and K is the spatial size. We compute K
by (H−P )/S+1, where H is the height&width of input images (which we resize
to be square), P is the patch size, and S is the stride size used in the model. To
accommodate ViTs with different patch sizes, we set H to 518 for those trained
with a patch size of 14, and 512 for ViTs with a patch size of 16, resulting in K
values of 37 and 32, respectively. Note that this feature map, G, can be bilinearly
interpolated to fit any arbitrary image resolution. We specifically choose these
K values to minimize the need for run-time interpolation during training, thus
improving denoising efficiency.
Residual predictor h. The residual predictor is structured as a 3-layer MLP
with ReLU activation after the hidden layers. The hidden dimension is set to be
one-quarter of the channel dimension of the ViT being studied.
Optimization. In our implementation, we extract N = 768 views (crops) from
each image, applying random augmentations, which include random flipping
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(a) DINOv2

(b) EVA02

(c) DeiT-III

(d) CLIP

Fig. S1: Feature map visualizations: positional embeddings (PE) and a cat
image in different ViTs. We visualize the feature maps across different layers (1 to
12) of various pre-trained ViT-base models, displayed sequentially from left to right.
For each panel, the top row shows the feature maps generated by inputting a zero
tensor, highlighting the influence of PE alone. The middle row presents the feature
norm of the PE feature map. The bottom row presents the feature map for a sample cat
image, allowing for a comparison that reveals visual correlations between the artifacts
in general image feature maps and the PE feature map.
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with a probability of 0.5, and random resizing and cropping, where the size of
the crop is scaled between 0.1 to 0.5 of the original image size and the aspect
ratio is maintained between 3/4 and 4/3. For understanding how the number of
views used for training affects the DVT’s performance, please refer to Fig. 7 in
the main text (our default setting is N = 768).

The coefficients in our loss function ((Eq. (6)) of the main text) are set as
α = 0.1 and β = 0.02. We use Adam optimizer, with a learning rate of 0.01
and a LinearLR decay strategy. Our models are trained for 20,000 iterations.
Each iteration will process 2048 randomly sampled pixels from the pre-extracted
feature maps. Note that due to the efficient implementation of F and the pre-
extraction of patch features, our denoising typically takes about 100-160 seconds
to finish (including the feature extraction time). This rapid optimization process
allows us to easily amortize the denoising cost with parallel computes, thereby
ensuring the practicality and applicability of our method in various scenarios.

We use the same hyperparameters for all experiments without any specific
tuning. See Figs. S4 to S10 for visualizations of some examples of our per-image
denoising output.

A.2 Generalizable Denoiser

Input (a) DINOv2 (c) conv3x3 (d) Single Xformer w/t PE (e) Single Xformer w/o PE (b) conv1x1

≈

≈

Fig. S2: Qualitative comparison of different denoiser architecture designs.
Convolution-based denoisers typically do not yield good performance (b, c). We empir-
ically find that the denoiser with learnable new positional embeddings (PE) is sensitive
to subtle details (see the blue and red rectangles and arrows). “Xformer”: Transformer
block.



22 J. Yang, K. Luo et al.

Optimization. To train the denoiser, we optimize the loss function defined in
Eq. (11) of the main text. Note that our approach does not necessitate re-training
ViTs; instead, it only optimizes the smaller denoisier network, which constitutes
only 8% of the original model’s size. The denoiser is trained for 10 epochs with
a batch size of 64, using the AdamW optimizer with a learning rate of 2e−4 and
a cosine learning rate scheduler. The denoiser training typically takes about 2
hours on 8 GPUs.

A.3 ViT Models

Model identifiers. We provide the timm model identifiers of the ViTs stud-
ied in this paper in Tab. S1. For experiments with large input image sizes (e.g .
using the 512-sized images as input to a model trained with 224-image resolu-
tion), we always resize the position embeddings using bicubic interpolation to
accommodate the increased size.

Table S1: timm model identifiers

Model Model identifier

DINOv2 [25] vit_base_patch14_dinov2.lvd142m
Register [7] vit_base_patch14_reg4_dinov2.lvd142m
DINO [3] vit_base_patch16_224.dino
MAE [16] vit_base_patch16_224.mae
EVA02 [13] eva02_base_patch16_clip_224.merged2b
CLIP [27] vit_base_patch16_clip_384.laion2b_ft_in12k_in1k
DeiT-III [36] deit3_base_patch16_224.fb_in1k

A.4 Correlation

In the main text, we mention the correlation between artifacts and their posi-
tions in images without a detailed context, which we now provide. Our focus
is on quantifying the correlation between different features and their positions
within an image. To analyze this correlation, we employ the maximal informa-
tion coefficient (MIC), a metric originally used for measuring the strength of
linear or nonlinear associations between two scalar variables. To adapt MIC for
our purpose, we compute the association between high-dimensional features f
and their positions. We calculate this by taking the maximal MIC across all
channels of f and averaging the MICs of the coordinates x and y.

maxc∈C MIC(f(x, :), x) + maxc∈C MIC(f(:, y), y)

2
, (S1)
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Input Original Denoised Input Original Denoised

(a) MAE (b) DINO

Fig. S3: Features from Weak Artifact Algorithms.

where f(x, :) denotes the feature vector on the x-coordinate, f(:, y) at the y-
coordinate, and C is the channel size of f . For hyperparameters of scalar MIC,
we set B = (H ×W )0.6:

MIC(X;Y) = max
|X||Y|<B

I[X;Y]

log2 (min (|X|, |Y|)) , (S2)

where I[X;Y] denotes the mutual information between two random variables X
and Y. We compute this metric from 100 randomly selected samples from the
ImageNet dataset.

Our analysis includes a comparison of the MIC values for the decomposed
noise map, the original noisy ViT features, and the denoised, artifact-free fea-
tures. The results, presented in Tab. 1 of the main paper, reveal that the de-
composed noise map exhibits the highest correlation with image positions. The
noisy features, which are entangled with noise artifacts originating from the
position embeddings, display the second highest positional correlation. In con-
trast, the noise-free features denoised by our method show the lowest correlation
with positions, demonstrating the effectiveness of our decomposition approach
in removing such artifacts.

A.5 Feature Qualitative Results

Algorithms producing mild artifacts. We additionally visualize the features
for algorithms with weak artifacts in Fig. S3. We empirically observe that ViTs
trained using both MAE and DINO exhibit very few visible artifacts in their
feature (center column). Figs. S9 and S10 shows additional visualizations of the
decomposed noise map and the learned residual terms of DINO and MAE, re-
spectively. We note that decomposed noise maps from these two models typically
manifest low-frequency patterns and the residual terms do not yield pronounced
patterns.
Additional visualizations. Additional visualizations of the feature maps at all
layers of ViT models are shown in Fig. S1. Observe that the artifact is present
in almost all layers of the models. See Figs. S4 to S10 for more visualizations.
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B Evaluation Protocols

We introduce our evaluation protocols here, mostly following [25]. We have
released our code, checkpoints, and logs for reproducibility at https://jiawei-
yang.github.io/DenoisingViT/.
Semantic Segmentation. We use a linear evaluation setting. In detail, we
extract the final feature maps from the frozen backbone and pass them through
the denoisers if there are any. Following this, feature maps are resized back to
their original resolution. Then, a single learnable linear layer is trained to predict
the semantic segmentation from these resized feature maps. The training and
testing image resolutions are 518× 518, following [25]. We train this linear head
for 40, 000 iterations for both VOC and ADE20k datasets. We report the mean
intersection over union (mIoU) metric for all experiments.
Depth estimation. We extract the final feature maps from the frozen back-
bone and pass them through the denoisers, if applicable. Then, we follow [25]
to append the cls token to every patch token to enrich feature representations.
We bilinearly upsample these features by a factor of 4 and train a linear layer
using classification loss to divide the prediction into 256 uniformly distributed
bins. Unlike [25], we slightly decrease the learning rate from 1e-4 to 5e-3, as we
find that this modification improves most of the methods, including baselines,
in our early experiments. We report our results on the commonly used metrics:
AbsRel (absolute relative error |d∗ − d|/d) and δ1 (percentage of pixels where
max(d∗/d, d/d∗) < 1.25).
Object detection. To evaluate the object detection task, we utilize the ViTDet
detector [21] to infer object bounding boxes based on feature maps extracted
either from original ViTs or denoisers. The detection framework is FasterRCNN
[31]. The input image resolution for training and testing is 518× 518, the same
as the semantic segmentation task. We train all models for 24k iterations, where
we decay the learning rate at steps 20k and 22k.

Our initial attempts at directly learning an object detection head from the
denoised features did not achieve superior performance. This led us to speculate
that the omission of relative positional information, which was largely removed
during denoising, might be important for accurately predicting the relative box
coordinates of objects within the full image context. This requirement is al-
most unique to the bounding box prediction task. To counteract this, we re-add
fixed sinusoidal positional embeddings into the feature maps produced by the
denoisers. This adjustment, adding no additional learnable parameters, is found
to enhance the detection performance. We believe that the disentanglement be-
tween positional features and semantic features would be an interesting direction
to study. We also apply this method to the baseline models, and the results are
shown in Tab. S2. We see that adding this step to the baselines does not yield
consistent performance gains. Consequently, we apply this step only to our de-
noisers.
Object discovery. We use LOST [33] to evaluate the object discovery perfor-
mance. LOST leverages the activation features of a pre-trained ViT for auto-

https://jiawei-yang.github.io/DenoisingViT/
https://jiawei-yang.github.io/DenoisingViT/


Denoising Vision Transformers 25

Table S2: Object detection with frozen features. We report the mAP metric on the
VOC object detection benchmark. “fixed PE”: fixed sinusoidal positional embeddings.

Method DINOv2 DINOv2-reg DeiT-III CLIP DINO EVA02 Avg

baseline 81.4 80.9 80.9 75.8 76.4 79.4 79.2
+fixed PE 81.5 (+0.1) 81.2 (+0.3) 80.9 75.7 (-0.1) 75.8 (-0.6) 78.7 (-0.7) 79.0 (-0.2)
+DVT 81.9 (+0.5) 81.4 (+0.5) 81.7 (+0.9) 77.0 (+1.2) 77.1 (+0.7) 80.2 (+0.8) 79.9 (+0.7)

Table S3: ImageNet Classification Accuracy using Attentive Probing.

Method DINOv2 DINOv2-reg DeiT-III CLIP DINO EVA02

baseline 81.2% 81.6% 81.6% 83.4% 77.0% 80.3%
+DVT 81.8% (+0.6) 81.8% (+0.2) 82.1% (+0.5) 83.5% (+0.1) 77.0% 80.5% (+0.2)

mated object discovery. Specifically, it uses the components of the last attention
layer for computing the similarities between the different patches to discover and
identify the object connected components. To use LOST, one has to manually
sweep between query, key, value, or other intermediate model outputs as the
indictor of objects’ prominence. Through our qualitative analysis, we find that
the feature norm is a good candidate to indict object prominence (See Fig. 6).
We report our results on the CorLoc metric (percentage of predicted box with an
IoU greater than 0.5 with one of the labeled object bounding boxes) as in [7,33].

Classification. Although the global-level classification task is beyond the scope
of our approach, our DVT demonstrates improved performance over its base-
lines through the use of an attentive probe protocol. Following the methodology
described in AIM [10], we conduct an “attentive probe” on both the original and
denoised patch tokens, omitting the CLS token, which our approach does not
process during training. This probe employs attention mechanisms to maximize
the extraction of information from each patch token. The backbones and the
denoisers are frozen during our evaluation, and we train the attentive layer for
10 epochs. The results, presented in Tab. S3, suggest that DVT can potentially
improve over its baselines, even though the denoising objective is orthogonal
to classification. We believe integrating the CLS token into the denoising pro-
cess represents a promising avenue for future research to enhance classification
performance.

Additionally, we underscore the versatility of the denoiser in our DVT as
a plug-in-and-play module, which can be optionally activated or deactivated
to support various functionalities without compromising any properties of the
original models. In essence, by leveraging the original class tokens before the
denoiser, one can always recover the original models’ classification performance.

C Further Discussion into ViT Understanding

Different positional embeddings. The models studied in this paper cover
three major types of position embeddings (PEs) — fixed sinusoidal PE (e.g .,
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MAE [16]), learnable additive PE (e.g ., DINO [3], DINOv2 [25], CLIP [27],
DeiT-III [36]), and learnable Rotary PE (e.g . EVA02 [13]). Intriguingly, our ob-
servations reveal that, regardless of the type of PE employed, artifacts are present
in all the studied ViTs, though with varying extents. The emergence of artifacts
seems to be a common characteristic across different PE types. Although the
fundamental underlying reason behind this property remains unclear, our work
identifies this issue and proposes a denoising method to rectify these artifacts.
Alternative approaches for position embeddings. A key component of
our hypothesis as to why artifacts exist in ViT features is the use of positional
embeddings. Currently, all ViTs leverage either fixed [16] or learned [4, 25, 36]
positional embeddings that are added to the input tokens of the Transformer
model. Alternatively, Rotary Positional Embeddings [34], which were originally
proposed in the language domain for better sequence length scaling, does not
directly add anything to the input tokens. Instead, this method encodes the
absolute position with a rotation matrix and crucially incorporates the explicit
relative position dependency in the computation of the attention values. Al-
though EVA02 [13] does leverage this kind of positional embedding, the training
process involves distilling from the already-noisy features of CLIP. Indeed, the
noisy artifacts of the EVA02 model resemble those of CLIP models, especially
in the later layers (Fig. S1). Thus, while the positional embedding selection is
promising, more research should be done towards ViTs that leverage these Ro-
tary PE for artifact reduction. Similarly, the positional embedding used in the
T5 language model [30] does not add a positional embedding directly to the
input; instead, it learns a bias that is added to the key-query dot product in the
self-attention step and does not include explicit position information in the self-
attention value vectors. ALiBi [26], used in many large language models (LLM),
also does not do so, and instead adds a static bias to the query-key dot prod-
uct. These methods eliminate the input-independent portion of the final output
feature while retaining the benefits of the position embedding. For future work,
we suggest further exploration into adapting other such positional embedding
paradigms specifically for the image domain.

D Discussion on Limitations

Limitations. Our approach faces some practical and theoretical challenges. On
the practical front, although our method leverages parallel computing to amor-
tize the denoising process, the time required to denoise a single image, such as
one with a resolution of 518× 518, remains high — approximately 100 seconds.
This duration may be impractical for commercial or personal users with limited
access to parallel computing resources, despite the fact that we can finish denois-
ing 10k samples within hours. Additionally, our generalizable denoisesr, trained
on the last layer features of pretrained ViTs, does not remove noise in interme-
diate outputs. Users requiring denoised features from multiple layers might need
to train distinct denoisers for different layers. From the theoretical perspective,
the reasons behind the presence of these artifacts remain unclear. Integrating
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Fig. S4: Visualization of DINOv2 [25] per-image denoising. We visualize all
components of the per-image denoising stage. From left to right: In the first 5 columns
we visualize the input image, the original noisy feature map from the model, the K-
Means clusters on the original features, the L2 norm on the original features, and the
similarity between the central red patch and other patches. In the next 4 columns we
visualize the the denoised feature map using DVT, the denoised features’ K-means
clusters, the denoised features’ L2 norms, and their similarity post-denoising. In the
last 3 columns we visualize the decomposed shared noise term G, the L2 norm of the
predicted residual term h, and the composite noise (G + h).
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Fig. S5: Visualization of CLIP [27] per-image denoising. We visualize all com-
ponents of the per-image denoising stage. From left to right: In the first 5 columns we
visualize the input image, the original noisy feature map from the model, the K-Means
clusters on the original features, the L2 norm on the original features, and the similarity
between the central red patch and other patches. In the next 4 columns we visualize
the the denoised feature map using DVT, the denoised features’ K-means clusters, the
denoised features’ L2 norms, and their similarity post-denoising. In the last 3 columns
we visualize the decomposed shared noise term G, the L2 norm of the predicted residual
term h, and the composite noise (G + h).
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Fig. S6: Visualization of EVA02 [13] per-image denoising. We visualize all com-
ponents of the per-image denoising stage. From left to right: In the first 5 columns we
visualize the input image, the original noisy feature map from the model, the K-Means
clusters on the original features, the L2 norm on the original features, and the similarity
between the central red patch and other patches. In the next 4 columns we visualize
the the denoised feature map using DVT, the denoised features’ K-means clusters, the
denoised features’ L2 norms, and their similarity post-denoising. In the last 3 columns
we visualize the decomposed shared noise term G, the L2 norm of the predicted residual
term h, and the composite noise (G + h).
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Fig. S7: Visualization of DeiT-III [36] per-image denoising. We visualize all
components of the per-image denoising stage. From left to right: In the first 5 columns
we visualize the input image, the original noisy feature map from the model, the K-
Means clusters on the original features, the L2 norm on the original features, and the
similarity between the central red patch and other patches. In the next 4 columns we
visualize the the denoised feature map using DVT, the denoised features’ K-means
clusters, the denoised features’ L2 norms, and their similarity post-denoising. In the
last 3 columns we visualize the decomposed shared noise term G, the L2 norm of the
predicted residual term h, and the composite noise (G + h).
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Fig. S8: Visualization of DINOv2 with Registers [7] per-image denoising. We
visualize all components of the per-image denoising stage. From left to right: In the first
5 columns we visualize the input image, the original noisy feature map from the model,
the K-Means clusters on the original features, the L2 norm on the original features, and
the similarity between the central red patch and other patches. In the next 4 columns
we visualize the the denoised feature map using DVT, the denoised features’ K-means
clusters, the denoised features’ L2 norms, and their similarity post-denoising. In the
last 3 columns we visualize the decomposed shared noise term G, the L2 norm of the
predicted residual term h, and the composite noise (G + h).
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Fig. S9: Visualization of DINO [3] per-image denoising. We visualize all com-
ponents of the per-image denoising stage. From left to right: In the first 5 columns we
visualize the input image, the original noisy feature map from the model, the K-Means
clusters on the original features, the L2 norm on the original features, and the similarity
between the central red patch and other patches. In the next 4 columns we visualize
the the denoised feature map using DVT, the denoised features’ K-means clusters, the
denoised features’ L2 norms, and their similarity post-denoising. In the last 3 columns
we visualize the decomposed shared noise term G, the L2 norm of the predicted residual
term h, and the composite noise (G + h).
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Fig. S10: Visualization of MAE [16] per-image denoising. We visualize all com-
ponents of the per-image denoising stage. From left to right: In the first 5 columns we
visualize the input image, the original noisy feature map from the model, the K-Means
clusters on the original features, the L2 norm on the original features, and the similarity
between the central red patch and other patches. In the next 4 columns we visualize
the the denoised feature map using DVT, the denoised features’ K-means clusters, the
denoised features’ L2 norms, and their similarity post-denoising. In the last 3 columns
we visualize the decomposed shared noise term G, the L2 norm of the predicted residual
term h, and the composite noise (G + h).
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insights from Registers [7] with our findings could yield a more comprehensive
understanding of these phenomena.
Broader Impact. Our work serves as one of the initial studies to understand
the position-based artifacts present in the features of ViT models. We identify
and propose methods to mitigate these artifacts, yet the root causes and charac-
teristics of these artifacts are not fully understood. The severity of artifacts varies
with the training algorithms; for instance, DINOv2 exhibits more pronounced ar-
tifacts compared to MAE, which shows subtler discrepancies. Thus, one direction
of exploration is to investigate the training paradigm that includes supervision
—i.e. local vs. global — as well as the loss-induced parameter landscape —i.e.
sharp vs. smooth Hessians. Furthermore, a better architectural design—e.g . new
positional embeddings—may diminish the severity of the feature artifacts. In this
work, we do not explore modifying the ViT’s design; however, more study into
its positional embeddings and the effect on downstream features should prove
interesting. Ultimately, we believe our findings are intriguing to the community
and more research is needed to better understand this fundamental problem.
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